Foreword

The National Standard Reference Data System is a Government-wide effort to provide for the technical community of the United States effective access to the quantitative data of physical science, critically evaluated and compiled for convenience, and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology.

The responsibility to administer the System was assigned to the National Bureau of Standards and an Office of Standard Reference Data was set up at the Bureau for this purpose. Since 1963, this Office has developed systematic plans for meeting high-priority needs for reliable reference data. It has undertaken to coordinate and integrate existing data evaluation and compilation activities (primarily those under sponsorship of Federal agencies) into a comprehensive program, supplementing and expanding technical coverage when necessary, establishing and maintaining standards for the output of the participating groups, and providing mechanisms for the dissemination of the output as required.

The System now comprises a complex of data centers and other activities, carried on in Government agencies, academic institutions, and nongovernmental laboratories. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. In addition, the centers and projects establish criteria for evaluation and compilation of data and make recommendations on needed modifications or extensions of experimental techniques.

Data publications of the NSRDS take a variety of physical forms, including books, pamphlets, loose-leaf sheets and computer tapes. While most of the compilations have been issued by the Government Printing Office, several have appeared in scientific journals. Under some circumstances, private publishing houses are regarded as appropriate primary dissemination mechanisms.

The technical scope of the NSRDS is indicated by the principal categories of data compilation projects now active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, colloid and surface properties, and mechanical properties.

An important aspect of the NSRDS is the advice and planning assistance which the National Research Council of the National Academy of Sciences-National Academy of Engineering provides. These services are organized under an overall Review Committee which considers the program as a whole and makes recommendations on policy, long-term planning, and international collaboration. Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The NSRDS-NBS series of publications is intended primarily to include evaluated reference data and critical reviews of long-term interest to the scientific and technical community.

A. V. ASTIN, Director.

Contents

	rage
Foreword	III
List of figures	IV
List of tables	IV
Nomenclature, Conversions, Physical Constants, and Fixed	
Points for Argon	V
1. Introduction	1
2. Survey of the literature	2
3. Summary of P-V-T data	2
4. Summary of vapor pressure data	3
5. Saturated liquid density	4
6. Vapor pressure	5
7. P-V-T surface	9
8. Analysis of P-V-T data	12

		T ub
9.	Temperature scale conversions	17
10.	Derived thermodynamic properties	17
11.	Equation of State and saturation boundary	20
12.	Second virial coefficient and intermolecular potential	20
13.	The Joule-Thomson inversion curve	23
14.	Specific heats	24
15.	Conclusions	26
16.	Acknowledgements	27
17.	References	30
18.	Appendix A-Table of thermodynamic properties of	
	argon at saturation	311
19.	Appendix B-Table of thermodynamic properties of	
	argon at selected pressures	32

Dag

Page

List of Figures

F	igure	sintered and compared. Data and	Page	Figure
	1.	Deviations between calculated equation (9) saturation liquid densities and experimental saturated liquid	1 ugo	13. D
		densities	5	14. D
	2.	Latent heat of vaporization as a function of tem-		fr
		perature	6	15. D
	3.	Volume of vaporization as a function of temperature	6	fr
	4.	Deviations of vapor pressure data from equation (14)	8	16 P
	5.	Low temperature density deviations of data by		te
		Michels et al. [1] from the equation of state (40)	12	17. D
	6.	High temperature density deviations of data by		SI
		Michels et al. [1] from the equation of state (40)	12	10 0
	7.	Density deviations in the region of the critical point	12	18. C
	8.	Pressure deviations in the region of the critical point	13	19. P
	9.	Density deviations of data by Michels et al. [6] from		20. In
		equation of state (40)	13	21. S
	10.	Density deviations for data points near the saturation		n
		boundary	13	99 C
	11.	Density deviations of saturation data from equation of		22. 5
		state (40)	13	10
	12.	Density deviations of data by Rogovaya et al. [7] from		23. C
		equation of state (40)	14	24. T

Ī3.	Density deviations of data by van Itterbeek et al. [8, 9] from equation of state (40)	14
14.	Density deviations of data by van Itterbeek et al. [9]	14
15.	Density deviations of data by van Witzenburg [10] from equation of state (40) .	14
16.	Pressure-density diagram showing isothermal charac-	15
17.	Density deviations for data at temperatures and pres- sures extrapolated beyond the fitted data points	15
18.	Comparison of second virial coefficients	21
19.	Potential function comparison	22
20.	Inversion curve comparisons	23
21.	Specific heat at constant pressure calculated by nu- merical method	24
22.	Specific heat at constant volume calculated by numer-	
	ical method	25
23.	Compressibility factor chart	28
24.	Temperature-entropy chart	29

List of Tables

T		а	1	1	
•	а	ł	1	1	DA'
	a				С.

DIC		rage
1.	Summary of P-V-T data	3
2.	Summary of vapor pressure data	3
3.	Coexistence density data	3
4.	Coefficients for saturated liquid densities for eq (9)	5
5.	Summary of vapor pressure deviations	9
6.	Least squares estimates of coefficients for vapor pres- sure equation (14)	9
7.	Estimated uncertainties of the experimental data	11
8.	Least squares estimates of coefficients for equation of	
	state (40)	11

		Page
9.	Conversion from international to thermodynamic tem-	
	peratures	17
10.	Adjustments for entropy and enthalpy of the saturated	
	liquid	19
11.	Comparison of heat of vaporization at the normal boil-	
	ing point	19
12.	Vapor pressure comparison	20
13.	Second virial coefficients as calculated from virial	
	equation of state (58)	21
14.	Inversion curve from eq. (64)	23